Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Haptics ; PP2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145541

RESUMO

The assessment of multi-person group collaboration has garnered increasing attention in recent years. However, it remains uncertain whether haptic information can be effectively utilized to measure teamwork behavior. This study seeks to evaluate teamwork competency within four-person groups and differentiate the contributions of individual members through a haptic collaborative task. To achieve this, we propose a paradigm in which four crews collaboratively manipulate a simulated boat to row along a target curve in a shared haptic-enabled virtual environment. We define eight features related to boat trajectory and synchronization among the four crews' paddling movements, which serve as indicators of teamwork competency. These features are then integrated into a comprehensive feature, and its correlation with self-reported teamwork competency is analyzed. The results demonstrate a strong positive correlation (r>0.8) between the comprehensive feature and teamwork competency. Additionally, we extract two kinesthetic features that represent the paddling movement preferences of each crew member, enabling us to distinguish their contributions within the group. These two features of the crews with the highest and the lowest contribution in each group were significantly different. This work demonstrates the feasibility of kinesthetic features in evaluating teamwork behavior during multi-person haptic collaboration tasks.

2.
Microsyst Nanoeng ; 9: 150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033991

RESUMO

Cervical spondylosis is a common disease that is often caused by long-term abnormal cervical curvature due to activities such as reading books and using computers or smartphones. This paper explores building an untethered and skin-integrated device in an e-skin form factor to monitor and haptically correct neck posture. The proposed design features a multilayered structure that integrates all flexible electronic circuits and components into a compact skin space while being untethered and skin conformal. An accelerometer in the e-skin attaches to the neck for posture sensing, while four vibration actuators closely touch the neck skin to provide localized vibrotactile stimuli that encode four-direction correction cues of neck flexion ±α and lateral bending ±ß. To ensure the reliability of posture sensing and vibrotactile rendering during neck movement, it is necessary to prevent the e-skin device from shifting position. Thus, a hollow structure-based method is implemented for stably attaching the e-skin to the neck skin. Experiments validated the e-skin device's sensing precision, skin-conformal compliance, stickiness, stability and effectiveness during the motion of neck postures, including its discrimination of localized four-direction vibrotactile cues. A user study verified the device's performance for sensing and correcting different abnormal neck postures during activities such as using smartphones, reading books, and processing computer files. The proposed e-skin device may create opportunities for more convenient cervical spondylosis prevention and rehabilitation.

3.
J Neural Eng ; 19(4)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35853431

RESUMO

Objective. Investigating how to promote the functional activation of the central sensorimotor system is an important goal in the neurorehabilitation research domain. We aim to validate the effectiveness of facilitating cortical excitability using a closed-loop visuomotor task, in which the task difficulty is adaptively adjusted based on an individual's sensorimotor cortical activation.Approach. We developed a novel visuomotor task, in which subjects moved a handle of a haptic device along a specific path while exerting a constant force against a virtual surface under visual feedback. The difficulty levels of the task were adapted with the aim of increasing the activation of sensorimotor areas, measured non-invasively by functional near-infrared spectroscopy. The changes in brain activation of the bilateral prefrontal cortex, sensorimotor cortex, and the occipital cortex obtained during the adaptive visuomotor task (adaptive group), were compared to the brain activation pattern elicited by the same duration of task with random difficulties in a control group.Main results.During one intervention session, the adaptive group showed significantly increased activation in the bilateral sensorimotor cortex, also enhanced effective connectivity between the prefrontal and sensorimotor areas compared to the control group.Significance.Our findings demonstrated that the functional near-infrared spectroscopy-based adaptive visuomotor task with high ecological validity can facilitate the neural activity in sensorimotor areas and thus has the potential to improve hand motor functions.


Assuntos
Córtex Sensório-Motor , Espectroscopia de Luz Próxima ao Infravermelho , Mapeamento Encefálico/métodos , Retroalimentação Sensorial , Humanos , Córtex Pré-Frontal/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos
4.
J Neural Eng ; 18(5)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33784650

RESUMO

Objective. Despite converging neuroimaging studies investigating how neural activity is modulated by various motor related factors, such as movement velocity and force magnitude, little has been devoted to identifying the effect of force accuracy. This study thus aimed to investigate the effect of task difficulty on cortical neural responses when participants performed a visuomotor task with varying demands on force accuracy.Approach. Fourteen healthy adults performed a set of force generation operations with six levels of force accuracy. The participants held a pen-shaped tool and moved the tool along a planar ring path, meanwhile producing a constant force against the plane under visual guidance. The required force accuracy was modulated by allowable tolerance of the force during the task execution. We employed functional near-infrared spectroscopy to record signals from bilateral prefrontal, sensorimotor and occipital areas, used the hemoglobin concentration as indicators of cortical activation, then calculated the effective connectivity across these regions by Granger causality.Main results.We observed overall stronger activation (oxy-hemoglobin concentration,p= 0.015) and connectivity (p< 0.05) associated with the initial increase in force accuracy, and the diminished trend in activation and connectivity when participants were exposed to excessive demands on accurate force generation. These findings suggested that the increasing task difficulty would be only beneficial for the mental investment up to a certain point, and above that point neural responses would show patterns of lower activation and connections, revealing mental overload at excessive task demands.Significance.Our results provide the first evidence for the inverted U-shaped effect of force accuracy on hemodynamic responses during fine visuomotor tasks. The insights obtained through this study also highlight the essential role of inter-region connectivity alterations for coping with task difficulty, enhance our understanding of the underlying motor neural processes, and provide the groundwork for developing adaptive neurorehabilitation strategies.


Assuntos
Movimento , Espectroscopia de Luz Próxima ao Infravermelho , Adulto , Hemodinâmica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...